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Field Theory Description of
Gontinuous Phase Transitions
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We present a formalism of a scalar, classical, and time-independent ficld
theory of the type proposed by Ferrell for the treatment of continuous phase
transitions. The formalism is developed along lines similar to those of
many-body theory. All physical quantities, c.g., susceptibilily, correlation
length, and free energy, are expressed as functionals of the two-point time-
independent correlation function and the order paramcter. This is done
both in the ordered and in the disordered phase. We obtain renormalized
equations and diagram expansions of all quantities and seif-consistent
approximation schemes are presented. It is shown that near the transition
temperature, which is defined within the theory, no weak coupling limit
exists, The generalization to morce complicated ficld symmetries is straight-
forward.

KEY WORDS: Phase transition; field theory; order parameter; renormal-
ization; approximation schemes.

1. INTRODUCTION

1o recent attempts to break beyond classical theories for general continuous
phase transitions it was suggested that the most important ingredients are
the long-wavelength spatial variation of the order parameter. One approach
was to postulate a statistical mechanics in terms of a spatially varying field.
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The field is defined on a coarsc-grained spice so that: (a) the field becomes
classical due to averaging over a cell and (b) effects stemming from variations
on a scale smaller than the size of a cell are assumced unimportant.© ®

In this approach the statistical mechanics 15 prescribed by postulating a
weight for each distribution of the field. More specifically, if 5(x) is a scalar
field, then one writes the weight as

win(x)} - cxpl BFin(x)] )
where

Fin0} — | dx{AfTnp ¢ Ayt i By 2)

where s is the number of dimensions. The partition function 1s obtained by
summing over all possible distributions 7(x) assuming all other variables to
have been summed previously.

In the above 4, , 4, and B arc constants whose values are not determined
within the theory. They arc in principle caleulated from the microscopic
theory in coarse-graining and in the climination of short-range phenomena.
Explicit calculation of the coefficients is hevond the power of present tech-
niques. However, the qualitative nature of the transition is assumed to he
independent of their particular values. They can, of course, be determined
from c¢xperiment.

On the other hand, dircct assavlis on the various many-body Hanul-
tonians have been carried out.* ¥ The dependence of correjation functions
on high momentum is eliminated and it is argued that only zero-frequency
gquantities are important. The parameters of the problem. renormalized by
the above considerations, are again beyvond the power of calculation and
cventually the equations for the correlation functions and the dependence.
near the transition, of various physical yuantitics on the correlation functions
arc essentially the same as 1n ihe model of . (2).

Both Ferrell'¥ and Migdal and Polyakov'- claim that their respective
results for the thermodynamics of the system obey scaling relations between
the critical exponents.'® This clearly goes beyond the classical theory'™ anil
gives a theory which treats its own fluctuations. This should apply all the
way to the critical poiat.

The samc problem was recently treated by Wilson® -89 yging the
technique of the renormalization group to qualitatively calculate the critical
exponents. The latter turn out to have nonclassical values.

In the present paper we devclop the formalism of a theory based on
Eq. (2). First we motivate the form ol I:q. (2) and explain our notion of
the order parameter. Then we consider the classical theory as an approxi-
mation to the present model and discuss critically the relations obtained 1n
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the classical theory between thermodynamic quantities and the correlation
function.

L ollowing these preliminaries, we turn to a study ot the full implications
of our postulated statistical mechanics. We do this along hines similar to
Martin and Schwinger,'™ Baym,/ and De Dominicis and Martn'™" and
eventually arrive at: (a) the equation of “"motion™ tor the correlation function,
(b) the expression for the correlation function tn terms ol a “mass operator.”™
(¢) the self-consistent approximation schemes, and (d) the expression for the
free energy in terms of the order paramcter correlation lunction. The free
cnergy is stationary with respect to variutions ot the order parameter and
correlation function and thus it can be used for variational calculations of
these quantities.

1 he discussion of results is deterred 10 tuture communications. Generally
speaking, we feel that the present approach 1s complementary to that of
Wilson, and a unification of the two may prove very fruitful.

2. NATURE OF THE ORDER PARAMETER

A general feature of continuous phase transiions s the anomalous
behavior of certain thermodynamic and response functions: examples are
the divergence of the susceptibility for a magnetic system and the divergence
ol the compressibility at the critical point ol a hiquid gas system. These are
the most divergent quantities.

This indicates that at the transition the system s in i regime dominated
by large fluctuations with long-range correlatons, In fact, from linear
response theory the susceptibility v (¢ 5, “cpd, o the average bulk order
parameter (> with respect to an external disturbance 18 related to the
order parameter correlation function  (x) y(x') g(x  xhoowhere the
angular brackets denote ensemble average by

y B [ dr g(r): L S r x (3)
©Q

Thus, as the transition is approached the range of the correlation function
must ncrease in order for the integrul to be divergent atinhinity. 'herefore.
configurations of the system which are spatially nonuniform may be expected
to contribute significantly to the [ree encrgy.

The free energy for nonuniform systems can be represented by the
integral over the volume of the system of o free energy density't48:

Pl dy X

In order to construct F(x). we divide the volume 2 of the system into

cells whose volumie is small compared 10 £ but large cnough that a focal
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order parameter can be defined as a classical lield by averaging over the
volume of the cell some corresponding microscopic observable 1810

To cluadate this point, we recall that the coneept of order parameter
plays a central role in the phenonienotogical theory of continuous trans-
tions.' ™ It is a quantity that vanishes “above™ and is nonzero “below™ the
transition: in other words, the numerical value of the order parameter is an
indication of the degree of ordering ol the system.

At the more fundamental level of the quantum many-body description
of the system the appearance ol a nonzero value of the order parameter in the
absence of an external field 1s a manilestation of spontancous symmetry
breaking.'!s49

s a general feature of many-body physics that, along with microscopic
observables subjected to the laws of quantum mechanics, there exist properties
ol the system macroscopic in the sense that their changes ohcy classical
faws ™17 To say this differently. to cach valuc of an observable to be regarded
as macroscopic there corresponds a set of states distinguished only by the
values ol microscopic observables: the manitold of these states forms g
Hilbert space and there is no interference between states belonging to Hilbert
spaces associated with diflerent values of the macroobservable.V™ A macro-
observable is said to be invariant or noninvariant with respect to a group of
transformations according to whether the associated Hilbert spaces are
mvariant or not under the transformations of the group. The order parameter
belongs to the latter class: specifically. 1t v & macroscopic property of the
system which 15 not invariant with respect to some group of symmetry
transformations of the Hamiltonian. Here we will be concerned with a
scalar field only but the results can be extended o ficlds with other symmetry
groups.

Macroobservables are gencrally obtiuned as space averages ol local
microobservables [e.g., products ol field operators ir, ¢), (e, )] and the
detimtion requires the limit of an infinite volume of integration ™ Thin
requirement cannot be exactly met when integrating over the finrte volume
of the cells. however: we choose the size of cach cell farge enough that on a
microscopic scale it can be regarded as infinite to 4 good approximation and
the resulting local macroscopic order parameter can be treated us a classical
ficld. A rough scale for the coarse-graining will be the range of the interaction.

From now on we shall assume that the configurations ol the system arc
deseribed by an otherwise unspecitied classical scalar ficld order parameter
defined by

x)lw U dsay)

where 9 is the corresponding microscopic observable and w 1s the volume of
the cell centered at x.
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3. FREE ENERGY FUNCTIONAL

It on a microscopic scale the volume of the cell can be considered
infinmite. on the other hand, on a macroscopic scate it must be small so that
the course-graining does not alier substantially the deseription of the phenom-
ena ot wterest, Specifically, as suggested by the divergence of the staue
susceptibity, Lq. (2), only long-waveicngth, long-range eficcts ure expected
to be important in the neighborhood of the transition. Henee the size of the
cell must be small compared to the dominant wavelengths,

At a given temperature 7 and tor o given value of the order parametes
n{x) the cell around x contributes to the total free energy the amount
wF(T, 7(x}). Since w is tinite and smatl, this guaniity s analytic!" both in I
and 7. we may then expand in power series and. dividing through by .,
we find for the (ree energy density

FUT () -« Fl(TYy 8 xa  Byl(x) (4

with A oAl - T, a0 - 00 B 2> 0; Tois atixed temperature (see discussion
in Section &) and Fy( T) represents the free coergy density when yp -+ 0. which
we shall not exphicitly consider from now on. None of the results in the
present paper will depend on this particular chotee of the coellicients. This
form is suggestive and makes the relation of the :wodel to previous caleula-
tions more explicit. For example, the lsing model of a magnet with infinite-
range interaction leads to a free encrgy of the above form: If J 15 the
strength of the interaction, then the average energy is simply £ JA/2, where
Al s the average muagnetization and J - (. I'rom a combinatortal argument
it can be shown that the entropy S, the logarithm of the number of states
with a given M, has an expansion of the torm Sid)  aM?* - bM?

with @ -~ 0. b <~ 0. Hence, the free encrpy v vinen by

KroM)y=F - TS (] alyM? THM?

It we now assume that the cells are independent of one another, then the
free energy for a given distribution s given by

[«‘.:7}: (uEF(l,‘(X,)) « \__l ,']:(\') Sl B?ll(,‘(‘)l (S)

1

where the sum is extended over the celis and »(x,1 15 the value of the order
parameter at the ith cell in the considercd disteibition of the tield.

¢ Such a model is sometimes referred to as the Kittel modcet. for which we hiave been unable
to find the exact reference.
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The partition function 1s then obtained by summing over all possible
distributions

z= [Tt oe] BlwLro) ©

where we have replaced n(x,) by v, and e(w) 15 @ normalhization factor that
depends only on the size of w.
In the limit in which the volume ot the cell can be regarded as small, we
represent the free energy (5) by an integral over the volume of the system
Fiml = | doy | Agx) = Byl(x)] (N
R
and the partition function by a funcuonal integral over the space of functions
7{X) that satisfy appropriate boundary conditions and do not vary on a
scale shorter than our graining

Z o | wiye st (%)

where
: /7}
' Uiy - lim | l] o)
The ensemble average of an arbitrary functional .#{y} of n(x) in this
formalism will be defined by

/\f{v}\/ o] i ff”ll'. {.,}i e BEIn

If we make the additionai assumption that the mean value of % is the
most probable one, then from Egs. (7) and (8) we recover the results of
Landau theory.'” That is, we find that the most probable distribution of the
ficld 1s uniform and the value 7 of the order parameter satisfics the equation

[4--2B7*]% O
On the other hand, if we do not replace the partition function (§) by its

saddlepoint value and compute the order paramcter correlation function
taking the following ensemble average

X)Xy = Z V| Zimh %) pixy ¢ (9)

we see that there is no corrclation tor x X
In fact, assuming that x is in the ith cell and x" 0 the i'th cell, Eq. (9) can
be rewnitten as

, a7 I, -,
Sp(x) (x> - !_gr}gl"J . |,l :(2)) 0, cxpl ﬁw)ﬁ/‘(r),)] (10

which vanishes for i =7 i’, F(z;)} being an even funcuon of its argument.
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We arrive, therefore, at the conclusion that the free energy functional (7)
1s inadequate to describe a regime of the system where the cells are strongly
interacting with each other as the previously mentioned divergence of the
static susceptibility indicates.

In order to have a theory suited 10 describe the neighborhood of the
transition, following Ferrell'?, we add to the local free energy density (4)
a nonlocal contribution of the form

7]()() J dx A X X' ) X’y (il

As it was remarked above, in the region of interest we expect long-wavelength
variations to be dominant, hence we may expand %(x’) in Taylor series and
retain only the lower-order lerms,

’

p(x)  m(x) +r-Vyx) - e Vigpx)y o oy r (x’ x)
Carrying out the integration, we sce that lrom the invariance of the kernel
Al x - x’]) under rotation and reflecion cxpression (11) reduces to
an*(x) -~ Ayn(x) Vin(x). with

a - J &rA(r]) < 0, A, (1.2y5) | drriMr) -0

Adding this result to the free energy density 1 Eq. (10) we find the tree
cnergy functional

F{n) = fd:\‘ [AN D)+ AE(X) - By'(x) - p(x) yix)] (12)
where the coeflicient 4 has been corrected by a, and we have added a lincar
term in 5(x) to describe the more general case when there i coupling to an
external field p(x). The expansion of the nonlincar interaction term (11),
however, is not essential to the development ol the formalisin presented in
this paper. The partition function again is obtained by summing over all the
possible distributions of the field.

~

7 = J 5/{7]: ¢ HF (13)

with F{} given by Eq. (12) and a similar modification holds for the definition
of ensemble averages.

4. SPECIAL CASES

It we take the imit B — 0, the functional integral equation (13) becomes
Gaussian and various quantities can be cvaluated exactly. For example, if we
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assumec ' 2- T, and u 0, so that translational invariance holds, we lind
for the average order parameter

(")("»0 VAL ' /./':7]; 7)()() LA 0

where the subscript zero indicates that 8- 0.
Furthermore, for the k louricr component of the order parameter
correlation function one finds

| dr () m(x') wexpik or - B[4 A% A] (14)

The k - 0 component diverges as A » 0 (1 approaches T.): this
corresponds to the divergence of the susceptibiity, thus the transition
temperature coincides with 7, and the asymptotic behavior of the correlation
function is of Ornstein-Zernike type.

For temperatures T <. T. there is no stable value of the order parameter
in the limit B = 0.

Another special case we want to consider is that the entire expression (12)
for the free cnergy functional is retained but the integral (13) is replaced by
the Jargest valuc of the integrand on the assumption that the mcan valuc
can be replaced by the most probable value. In other words, we assume that
the fluctuations are very smalil.

As was stated in the introduction. this approximation lcads to the
classical results of the Landau- Ginzburg®®' theory.

Varying £in Eq. (12) with respect to 1. it is [ound that tie most probable
value of the order parameter satisfics the Ginzburg Landau equation

[24 -+ 4Bn¥(x) 24,V 5(x) - judx) (15)

If we now write p-> ;o S correspondingly 9 changes by some o).
and to first order we have

24 4 12Bn¥x) 24,V onix)  opdx) (10}
Ui ] I

On the other hand, the linear response ol the average of y(x) is given
by 6n9(x); - B[ dx' g(x, x') Su(x'). where

q(x, x) = “[n(x) - m(x) Jnx)y - y(x') ], (17

Equations (15) and (16} are used™ to dernve an expression [or the cor-
relation function g. This is donc by identilying 7(x) with «n(x)>. The result
1s a correlation function of the Ornstein Zernike type, yielding classical
behavior for the susceptibility and the corrclation length.

The identification depends. ol course, on the absence of fluctuations.
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But. as 7, is approached the susceptibility diverges and so the theory becomes
meonsistent, leading to the Ginzburg criterion.™ This limits the range of
temperatures in which the approximation s applicable.

In summary, the remarks contained m this section, together with the
arguments previously given for the necessity of the squarc-gradient term,
show that in order to break away from a classical theory, both the correlating
{¥y)* 1erm and the nonlinear term /' must be included in the free energy
functional. Furthermore, averages must be computed from the partition
function. rather than being substituted by most probable values. The rest
of the paper will be concerned with the detclopment of the formalism needed
to achieve this aim.

5. DEFINITIONS AND DERIVATIVE RELATIONS

It 15 convenient to consider the more gencral form of the free energy
functional (12)

Flny - A(R2) (D) n(2) + BU23) Yy 92y (3 a4y 1y gty (18)

where I - x,, 2 - Xy, ete., integration over repeated indices is understood,
and A and B arc symmetric in their arguments.
The particular form (12) ts recovered making the ansarz
A(12) (A — A, V3 o(1 — 2), B(1234) B - 2)y2 - 3)d(3 --4)
(19)

The thermodynanic average of an arbitrary functional (/n; of the order
parameter is defined by

<G{7’} N " -’/{711 (;{7}: ¢ 3Fi
In particular, the n-point order paramcter correlation function is the average
of the functional 7(1) 5(2) - y(a),

g2 - n) - (1Y n(2y -+ pny

so that in this notation the average local order parameter is the one-point
correlation function {(1)> -= g(I).

From the relation between the thermodynamic free cnergy M and the
partition function,

W= --ftjog”Z 20)
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it follows that the cumulants can be generited by functional dilferentiation
ol" W with respect to u:

g2 ny = (B )

0 ] 0

. e .. I§! (2
Syl S/L(n 1} ot l) h

where the derivatives are computed at the physical limit; that is, at the value
of i equal to the value of the external ficld.

In fact, from Eq. (21) it follows that the functions ¢ arc related to the
correlation functions by

g(l)y == ¢g(1), g(12) g2y g1y qi2y *2)
e(123) - q(123) - q(12) q(3) : qti3)q(2) i q(23)q(1) - g(l) ¢(2) ¢4(3)
cle.
Furthermore, the cumulants satisty the Jderivative relation
B/ 8un - D] g2y - g2 nin | 1) (23)

Similar relations satisficd by the corrclation functions are

BYUSSu(n: N)g2-my . g2 . 1y g(i2-mygmn - 1))
B8/8An 1, n - 2] g(12 - ) (b
g2 -n - Lon+ 2y 2(12--megn . oo 2)]

For the later reference, we note that

B-1 8g(12)/84(34) [(1234)  g(12) 2034)]

and expressing the correlation [unctions entering both sides of the equation
in terms of the cumulants, we have

B-18q(12)/6A4(34) . [qUi1234) - ¢(123) g(4) + ¢(124) =(3)
Cql3) g(24) - q(14) ¢(23)] 125}

6. EQUATIONS FOR THE ORDER PARAMETER
AND THE CORRELATION FUNCTION

The local average order parameter in absence of an external ficld is
obtained by taking the lLimit

lin& SWidu(l) lim‘ e(1) (20)

When translational invariance is assumed the r.hus. becomes independent
of position. The phase in which this average i1s nonzero is called the ordered
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phase and the other the disordered phase.™™ Let us lirst consider the latter
casc. An cquation for the two-point correlation function can be immediately
obtained from the identity®

[ iy doghlg2re =i 0 (27)

I tact, carrying out the differentation under the integral. we obtain
B m(2) F ot ]) Al 2)

so that, computing explicitly the dernivative and taking into account the
symmetry of the coefficicnts in Eq. (18). the above cquation becomes

2RA(12) g(22) |- 4BB(1234) ¢(2342) (1 )
or, in terms ol the cumulants,
2BA012) ¢(22) | 4BB(1234)[3¢(34) ¢(22)  ¢(2342)] &1 2) (28)
I we define the inverse function
q,'12)  28A4012) (29)
and the analog of a “mass operator™ A(12) by
M(12)¢(32) - —4BB(1234)[3¢(34) ¢(22) -+ q(2342)] (30
Equation (28) can be cast in the form

(9,200 MU g2 ol 2) (31

tquation (31) 1s simiar to Dyson’s cquation tor the Green's function
in quantum field theory. We shall exploit this formal analogy to extend to
this problem the techniques used in many-body theory to gencrate self-
consistent approximation for the corrclation function.

In the ordered phasc the formalism s somewhat complicated by the
occurrence of a nonvanishing value for the average order parameter.

We define a new field vanable & describing the Jocal fluctuations of the
order paramcter,

Sy oty (] (32)

“ Wilson in the unpublished Ref. 8a has denived 1ne Schwinger ecquation for g using the
saume approach only in the disordered phasc. This work cime to our attention only after
the completion of the present work und we are grateful to Prof. Kenneth Wilson for
bringing it to our attention. Se¢e also Rel. 27,
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Then, in terms of & and g, the free energy Functional (18) reads
My = Ligl 0 Gl ol (13)
with
I{g} == A(12) g(1) g(2) -- B(1234) (1) £(2) g(3) g(4) - 4u(1) 2(1)

G{&, g} == A(12)[22(1) £(2) - &(1) €2}
-1 B(1234)[4g(1) £(2) £(3) &(4) 1- 62(1) £(2) €(3) £(4)
+4g(1) g(2) g(3) &4) -+ &N &) &3 EB)] - () & (34)

As a consequence, for the partion function we have
7o et gl (35)
with

.”[{L’: ) V:E: ¢ GlEg (36)

so that we the free energy becomes
W= L{gy 5 Vog g (37
The average of an arbitrary function . #{&) will be defined by
(FE = 2 g [ 218 Figre i (38)

In particular, averages of products of the field variable & are referred to as
subtracted correlation functions. We have

&)y =0, CE) €2), - q(12), E(1) E2) E3) = y(123) 39

CE(D) E(2) £3) €(4)y = q(1234) - q(12) ¢(34) = ¢(13) ¢(24) -- q(14) g(23)

as follows from the definition (32) of the ficld variable € and the relations (22)
between cumulants and correlation functions.
Thus, if we now consider the identity

T @@ssan) e s o

and carry out the differentiation, we obtain -'6G{&, g}/8&(1) - = 0. That is,

24(12)g(2) + 4B(1234)[32(2) g(34) - 2(2) g(3) g(4) - g(234)] - w(D) - 0
(40)
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where we have used Eqs. (34) and (39), and for generality we have kept a
nonvanishing value for the external ficld. Defining the effective source
function

K - - 4B(1234)[g(2) g(3) g(4) : 3g(2yq(34) + ¢(234)] (40
The above equation for the order parameter can be rewritten in the form

B-1g;M(12) g(2)  quthy - K(1) 42)

In principle, if we could solve exactly thes functional equation for an
arbitrary spatially varying external ficld, compicte information on the cqui-
librium properties of the system would be obtained by generating correlation
functions of higher order by functional differentiation of the solution for g
with respect to u. We see, however, from the defimtion (41) that K depends
on g both explicitly and implicitly through the cumulants, and an exact
solution is not possible.

In view of the necessity of turning te approximations. it 1s convenient
to derive an equation also for the two-point cumulant. This allows us, on
the one hand, to extend. to the casc where there i~ a condensed phase the
techniques employed to generate systematically approximation schemes for
*“normal” systems, and on the other hand to regard the two-point cumulant
as an independent variable 1n its own right, along with the order paramcter
as, for example, is the case in the so-called ®-derivable approximation
schemes.®® Furthermore, for the kind of cquilibrium properties of the
system we are interested in, the order paramcter and the two-point cumulant
arc the central objects in the theory. From the latter we may, in fact, casily
derive the susceptibility in zero external ficld and the corrclation length.
Recalling that the susceptibility is given by the response of the average order
parameter to a small uniform external ficld, we have

X < (1192 _[’”m [og(1):0p] (43)
where, for a uniform variation of the external ficld.

Sg(D/su -~ 3 | d2q(12) (44)
Hence

v (BiQ) ‘|'”(/--| d2 q(12) (45)

Since we consider uniform variations ol ;. translational invariance
holds, so that

X:ﬁf A -2)q(l 2y Btk . 0) (46)
2
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where

gk) | et gl — 2) (47)

v

For the correlation length we have

J},(l“(l - 2 RARNTE! 2) &gtk "
Jods() = 2yq(l -~ 2 N hF i %)

To derive the equation satisfied by the two-point cummulant, we consider
the identity

Zg) [ 718 BEMNER) ¢ on] 0 (49)
Carrying out the derivation, we obtain

2BA(12)CE(Z) £(2)> = 4BB(1734)[3g(2) £(3) £(4) &(2) >
13¢3) gMIER &2y - ED)EREDE2R] Bl - 2)

where we have used Eq. (34) and the first of tys. (39). Comparing this with
the rest of Eqs. (39), we obtain

284(12) q(22) + 4BB(1234)[32(3) g(4; ¢(22) - 3q(34) q(22)
+ 3g(2) q(342) . ¢(2342)) - »1  2) {50)

We may now define the analog of the “mass operator” by

M(12) g(22) = -4BB(1234)[32(3) ¢14) ¢(22) 1 3¢(34) ¢(22)
4 3g(2) ¢(342) - ¢(2342)] (51)

so that, making the appropriate insertion on the Lhas., Eq. (50) takes the
same form as Eq. (31), i.e.,

[q,’(12) — MUD]q22) ol - ) (32)

We shall now make some considerations that depend only on the form
of Eq. (52).

7. TRANSITION TEMPERATURE AND STRONG COUPLING

In Section 3 we introduced the parameters of the model and among these
appecared 7,. This temperaturc was included in order to facihtate the
comparison with previous calculations, mainly Landau’s.'” However, when
one treats the statistical mechanics of the model as expressed in Eqgs. (1)
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and (2), 7T, loses any particular meaning. Since the model s suppaosed to
describe a system near a transition, we have to define a transition temperature
within the theory.

A natural definition results immediately from the relation between the
susceptibility and the cumulant ¢, Eq. (40). At the transition temperature the
susceptibility diverges and hence we can define 7', as the temperature at which

gMk - 0. T) . 0 (53)

This definition applies both in the ordered and disordered phases.

We mention in passing another possibility for defining 7, . namely the
temperature at which g vanishes. In other words, we expect that at low
temperatures Eq. (42) for the order parameter will possess nonvanishing
solutions in the uniform system and with external field ;¢ 0. A< the temper-
ature 1s increased these solutions tend to rero. 7, can be defined as the
temperature at the which they vanish. The matchmg of the different defintions
of T,1s no minor burden on an approximation scheme.

Considering the Fourier transforms of ¢ and ¢, , which are defined in
the vniform case by

gui2) - (1)) ¢ v Byl (54)

go(12) -~ (1182) Y e 7 g k) 155)
and also

M(12) - (I,/.Q)Xv A (k) i56)

Eq. (52) can be rewritten as

gk) - fg k) Mk)] Y RBAUGY Mk)) ! (57)

where use was made of Eq. (29). All the tunctions appearing in (57) depend.
of course. on T also. The equation for 7', . (53), reads

28,400.T) - A0, Ty 0 (58)
From (57) and (58) we have
g Nk, T) ~ 2BA(k, T) - 28,40, 7y [Mik, T) A0, T))]
which we consider in two limits:

(vy T -—-7T,,k->0. Here
g Wk, T,) = 2B, |Ak, T,) - - A0, T,)]  [M(k.T,) - MO, T)] (59



46 Daniel J. Amit and Marco Zannetti

From the arguments leading to (12), onc expects
AR, T AT ) ~ A K? (1)

At 7, the inverse correlation function should bechave as A¥ » n - 048 If
indeed % > 0, then the critical behavior of ¢ (k) has 1o come from the
second term in Eq. (59). namely from

A”(/\, [,) .“/((L 'I.') ,-_F\.(, /\-'.' »

which will dominate the first term as A - » 0.
The situation is more interesting in the next case.

(by k =0, T-»T,. Here

g WO, T):==2BA0, T) 28,-0,7,) [MO,T) MO, T)]
= 2B[A0, TV 0. 1)) 2B By A0, T)
— [M(O.T) -0, T))] 6l)

H A(12) is taken from Eq. (19) with
A0, T) T T)) {62)
as in the discussion leading to 4. (-h, then

AO,T) A0, T) N0 T (63)

r

If A were independent of 7, the first term i Lg. (61) would vanish. The
second term on the r.h.s. of Eq. (61) s clea ly linear in T - T, . But as we
know'®

g 40, 7) By NIy~ - Ty (04)

with y .- I. Thus the lincar term in 7 - T, has to be exact/y canceled by
the third term on the r.h.s. of (61). [f the third term in (61) were merely to
produce (T — T,), that would not suflice, since near 7, the hnear term
would dominate for 3 " 1.

From Eq. (51) 1t is evident that as B8 » 0, A7 -» 0. The hincar term i
T - T, is independent of B. The conclusion is that as 7~ T, . M cannot
have a weak coupling limit. Whatever the size ol B, there is always a value
T — T, such that for all T satisfying

‘T -1, < B, p O

M©. Ty -- M, T,) will have a leading tecrmain T - - T, whose cocflicient 15
independent of B.

This is a result beyond the power of any finite perturbation expansion
in B.
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8. RENORMALIZED EQUATIONS FOR K AND M

We notice that if we let the average ol the order parameter vanish. the
functional M defined in Eq. (51) coincides with the corresponding functional
defined in Eq. (30) and the solutions of F¢. (52) tend to the solutions of
kq. (31).

it is therefore convenient to develop the formalism in the ordered phasce;
the description of the disordered phase will then be contained as a particular
case obtained by setting to zero the value ol the external ticld and of the
average order prameter. Eguations (42) and (52) are the first two of an
infinite chain of equations relating cumulants ol higher and higher order.
We can formally close the sct of equations by climinating three-point and
four-point cumulants from the expressions for K and M. at the expense of
introducing a functional integrodificrennal cquation for .

Such a step does not represent any progees stoward the exact solution
ol the problem: however, it has the advantage that approximation schemes
can be derived systematically by iteration of the equation for Af .20

The elimtnation of three- and four-point cumulants is carried out using
the derivative relalions (23), (25), and Dyson’s equation, with the result (sce
Appendix A)

M2y - -4BB1234)[3g(3) g(4)  3g(34)]
4B(1234){g(2) ¢(3DIEM(32):8;u4)]  g(23)[SM(32)!84(34)];
(65)
which in the disordered phase reduces to

AM(12) < 12BB1234) ¢(34) - 4B01234) ¢ O [6 M3y 6.434)]  (66)

We must now express the derivatives with respect to poand 1 in terms
of derivatives with respect to the natural variables ¢ and ¢. The method 15
closely siular to the renormalization procedure for the source function and
the mass operator in Ref. {1,

M depends on pand A only through - and ¢. That this s so cun be seen
by gencrating the skeleton diagrams for Af by iteration of Lqg. (65) and
observing that they contain only the bare interaction B, ¢ lines, and ¢ lines.

Thus. we may write

SM(12) [ SM(12) ] 3g(3) [ SM(12) ] dq(34)

S ,

Spu(3) 5¢(3) 1, Su(3) g3y, au03)
SM(12) S oM(12) . oM(S4)
- B—s ===l (33 L) g3s) = 34
B[ 8g(3) },,q( ) l dy(34) ],,q( ) dul3) Ut

where E£q. (A.2) of Appendix A was used.



48 Daniel J. Amit and Mirco Zannetti

Defining

1-31234) 81 — ) a2 4)  [8M(12):8¢(38)], ¢(33) q(34)

we obtain
SMUI2)/dpu3)y B AO202)0.M(12)!92(3)], (33)
Similarly, from

oM(12) [. M2 )] AYITRY! i aM(12) ny(jil
54(34) ogm Loy 1 oag(3d) ) 6434

we obtain (see Appendix B)

oM(12) (\\/“2)
5A(34) ‘ ‘ l (2313 gl gidd)]
, M/(lz) _
A i2 13 1y 3d) ¢(43
( )l Sy(3d) J g3 ey L34y gad)]
A P S V(56
B/I(lzli)[ oM 12’ ‘ 1(35) A15656) l A ’.‘:’”]
og(7)y b,

(67)

(O8)

g{ 74 gt63)
(69)

inserting i-gs. (08) zmd (69) 11 Fq. (63), the announced integrodilicrentral
equation for M is obtained: however. m order to have the equations ina form
more suitable for generating approximation schemes: we make a few addi-

tional formal manipulations.’

Recognizing that the denivative of Af with respect 1o g gves the irre-

ducible vertex part®
Z01234) (o M(12) s,
we proceed to show that the four-point verter function
1'(1234y A2 [0M (1.3 5¢(34)],
satisties the Bethe-Salpeter cquation. In fuct. the detinition
AN1234) -0 - 382 4 E11234) ¢(33) ¢id4d)
can be used to obtain the formal eapansion

A(1234) = 8(1 SO - 4 0 E(1234) ¢(33) 44

+ E(1234) ¢(35) q(46) Z(5636) ¢(33) g6y ;-

Thus, for I” we have

I(1234) == E(1234) -; E(1212) ¢(i5) g 205 - 3) 86 - 4)
4- E(5678) q(73) ¢(84) + -] =(3434)

170
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and resumming the serics, we find that 77 satisfies
I(1234) - Z(1234) + Z0212) 415 ¢126) [(5634) (70

which is the Bethe-Salpeter equation.
Similarly, we may define the three-point irreducible vertex part

X(123) [0 by Y], (72)
and show that the three-point vertex function
PU123) LU 2ID) M2 0g(B)), (73)
15 related to I7 by the equation (sce Appendin ()
P(123) - X(123) - I(1212) q(15) ¢(26) X(563) (74)

Rewriting Eqgs. (68) and (69) in terms of the vertex functions and inserting
the result in Eqs. (A.4) and (A.5) of Appendix A, vwe obtain

K(l)y - 4B(1234,{2(2) g(3) 2(4) : 3e(2)4(34) : ¢(22) ¢(33) P(236) ¢(64))]

78
M(12) - —4BB1234)[3g(3) 2(4) -+ 3q(3d)] "
-- 48B(1234) g(2) ¢(33) P(326) y(64)
- 43B(1234) ¢(23) P(320)[2(3) qi0d) | =(4) g(63))
— 48B(1234) q(23) [(3267)|¢(631 ¢(74) - 4(64) ¢(73)]
43B(1234) q(23) P(326) ¢(67) P(789) ¢(94) ¢(93) (76)

Equations (42), (52), (75) (76), (71), and (74) together with the definitions
(70) and (72) of Z and X provide the desired of equations.

In the disordered phase, &, K, ¥, and P vanish identically and the set of
equations reduces to Dyson's equation, with M given by

M(12) — - 128B(1234) ¢(34)
FB1234) g(23) 132067)y163) y(7T4) 1 ¢(64) ¢(T3)] (77)

and the Bethe-Salpeter cquation for I, Eq. (71), with = defined by

E(1234) - SM12) 0q(34) (78)

9. APPROXIMATION SCHEMES

If we assume that B is a small quantity, we may think of treating the
nonlinear interaction by means of ordinary peiturbation theory.

S2z2i7/1-4
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In the disordered phase this amounts to computing the noninteracting
corrclation function ¢, in the soluble model B 0, thereafter genvrating
expansions for M in terms of B and ¢, by iteration of Eq. (66).'2"

[However, this method cannot be extended to the region helow 1he
transition since, as has been already pomted out, tor 8 0 there s no
stable order parameter and the nomnteracting correlation function s
ll-defined.

Furthermore, the absence of 4 weak couphing linut, which we have
discussed in Section 7 and which was pointed out as well by Ferreli
clearly shows that cven in the disordered phase ordinary perturbation theory
is msutlicient to describe the behavior of the systenr at the transition. Tt s
therefore necessary to consider self=consistent approximation ol infinite
order in B. The formal results of the previous section provide the mechanism
for gencrating such approximiations in i systematic way.

The most simple approximation schemes are obtained taking A and A/
to sonie order in g and ¢ and solving sclf-consisiently the couple of equations
(42) and (52). However. care must be excreised in matching the approximation
for A/ with the approximation for K. Lo this one s guided by relations satisfied
by the exact M and K. For example, dilferennating Eq. (42) with respect to e,
we obtain the equatton

B g 2y o202y ol 2 - [BRA) 0u2)] (79)
Next, if Kis regarded as a functional of g only, we may write
SR du2)  [BK() ag(D)] 62y du2) (¥0))
and nserting this in Eq. (79), it follows that
1, '02)  BISK(H gD 8 YV da2ird2) ol 2) (81)
Recalling the derivative relation (23) and comparing with kq. (321, we ¢
theretore that in the exact theory M and K are related by
M2y BoR()oelld) (87)
In the theory of mteracting bosons appioximations that preserve the
above relation between M and A do satsty the Hugenholtz -Pines theorem

and are therefore referred to as &
However, if the approximation s such that Eg. (82) 1s not satishicd, then

)

Egs. (81) and (52) it follows that ¢(12) - 5 Y og()!du(2). That is, within

paples™ approamations, G0

* This analogy should not be tuken oo hieraliv, In fact, for the boson system the
Hugenholtz-Pines theorem is a consedgu-nee of th gauge mvariance of the theory
which does not hold in the present case.
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the considered approximation the corrclution function cannot be related 10
the response of the order parameter to an external disturbance. To put it
differently, only in the case of “gapless™ approximations may we derve
unambiguously the static susceptibility trom g(A  0). We represent bq. 173)
pictorially as follows:

”’1{”’@+@

where the completely symmetric interaction is denoted by a dot. the curly hine
represents the order parameter g, the full line represents the two-point
cumulant ¢, and the tnangle represents the three-point vertex function £,
We see that the simplest approximation to A" s given by the term

oy
- H \ (x")
2 a8(1234)9(2)9(3ja(4)
Hence, the corresponding “gapless™ approxnation s generated by taking
for M the diagram obtained by differentiating (83) with respect to ¢:

L’yff -123(1234)9(3)q(4) (84)

Diagrams of this type for M and A correspond to the Bogoliubov
approximation lor liquid heltum. " Inscruing exoressions (83) and (84) in
[:gs. (42) and (52) and specializing to the translattonal invariant case of a
uniform cxternal field, the following cquations are obtamned after making
the ansatz (19) for A4 and B:

A 2Betlg - . 2B[A — AN 6Bt gl - 2) - ol - 2) (85)

The first of the above equations is the cquation for the order parameter
obtained in the Landau theory.™ while the sccond one is the equation for
the correlation function obtained by Kadanol¥ e a/.'™®

Therefore, it appears that the clussical theory corresponds to the irs
and most simple approximation in the nicrachs generated by taking into
account successive diagrams for A

We just mention here, and shail reconsider the subject more extensively
i the next section, that alternativeiy (o the “papiess™ scheme there exists
the so-called ®D-derivable approximation scheme. In -derivable approxi-
mations [q. (82), satisfied by M and K in the exact theory, need no longer
be satisfied by the approximate M and AL

Such a distinction, however, does not oxin i the disordered phase where
in zcro field K is identically zero. In this case one has only to produce
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approximate expressions for M as afunctional of ¢ and solve self-consistently
Eqg. (31). Considering kq. (66), the lowest-order contribution to M s given

by the Hartree term
O -1208(1234)q(34) (80)

fterating, one finds to second order
< 6(an)'8(1345)q(33)8(3248)q(44)q(55)

and to third order

@ 54(48)’8(1345)q(33)8(3467)a(a4)a(66)

x 8(6275)a(77)a(55)

Inserting expression (86) for A in bEq. (31) and making agamn the ansat:
(19). for the translational invariant system we hnd the following equation for
the correlation function:

B[4 - ANZ 4 6Bgl Dol g2 0 ol

In a forthcoming paper we shall consider the self-consistent solution of
the above cquation, which exhibits a “nonclassical™ asymptotic behavior Tor
the susceptibility, and the problem ol extending the approximation below
the transition.

As was already mentioned. the Iack of weak coupling linut compel.
one to consider self-consistent approximations of mtinite order 10 8. To go
beyond the simple schemes of the type mentioned above, one must make
full use of the closed set of ¢quations obtained in the previous section.

The general scheme can be summarized so: From an imitial approximate
expression for M as a functional of the unknown g and ¢ the irreductble
vertex parts = and X are computed by functional differentiation. & i veed
in Eq. (71) to solve for I, and P is catculated torm g, (74). In Turn Mand P
arc inserted in the equations for K and A, (75) and (76), respectively, which
must be solved self-consistently together with the cquations for ¢ und ¢.

In its simplest version this program gives the shiclded potential approxi-
mation for the correlation function. Limiting oursclves to the disordered
phase and taking as the initial approximation for A/ the Hartree term

QO
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from Lq. (78), = reduces 10 the bare interaction e, Inserting this result in
Eg. (713 1" 1s obtained as the sum oi" all bubble diagrams

e O s OO

Substituting in turn into fig. (77) and verating, we lind that A7 s given by
the sum of all diagrams obtained by removing one g-line from the bubbic
ring diagrams:

M:O+@ N/ ®+

Going one step further and dernving from the above expression for M
the irreducible vertex part & ,we obtain an cquation for [” formally similar
to the one considered by Riedel. %%

10. FREE ENERGY

As we have seen previously, quantities hke the susceptibility and the
correlation length can be readily obtained once the order parameter corre-
fation function is known.

However, another quantity of interest is the specilic heat and this cannot
be obtained just from the knowledge of the correlation function. In order to
obtain the gencral theemodynamic propertics of the system associated with a
given approximation to the correlation tunction one needs an expression for
the free energy as a functional of g and ¢

One cun show that a Luttinger Ward0-1" type of free energy expression
can bhe obtamed, Kamely

W Bull)gly - BA)etlye(2) - q(1)] « Lloggtl, Iy ;. 1pdie. ¢!
(87)

where the notation fog g(1, 1) represents the trace of the matnx log g(1, 2).
I{ the system is translationally invariant. then the matrix s diagonal in the
momentum representation and log (1, 1) can be computed summing over

the Fourier components 3, log g(p).
The functional @{g, ¢} has the lollowing propertics:

[3P/sg()], = 2K(1),  [8®Sg(), 2}, B IM.2) (88)

In order to show that Eq. (87) indecd gives an expression for the free energy,
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onc computcs the derivatives of the r.h.s. with respect Lo the paramcters
A, B. B, obtaining (Appendix D)

o -BWISA(12) - Blg(h g(2) - (1] (89)
L(-—ﬂlV)/@B - /3[3,1(” +ogE() gUI1) - 3qA(HD
4D gL - g(1in))] (90)
Q- BB - [l 402 42) - K] gD
S B TMU2) - A02)]¢(12) 1)

In Eq. (90) all arguments of the cumulants arc taken at the same point anid
an integration over the volume of the system is understood. The derivative
with respect to B, for simplicity, has been computed in the case of a point
interaction, corresponding to the ansatz {(19).

In the exact casc thesc derivatives are cqual to the corresponding
derivatives of log Z (Appendix D), where Z is the partition function given
in Eq. (35).

Furthermore, dillerentiating ( -~ £47) with respect to g and ¢, keeping the
parameters constant, it follows that

[6(= BW)/ég(D], ~ Buth)y BRI — ¢,'(12) £(2)
B(--BW)8q(12)}, =  Hg,'(121 - M(12) - ¢ '(12)]
Therefore, comparing with Eqs. (42) and (32), we {ind
[B(-BW)jdg(D)], ~ [5C BIW)0q(12)), - O (92)

That is, the expression for the free energy given in Eq. (87) has the property
that it is stationary for changes of g and ¢ aboat thetr physical values, when
the parameters arc kept fixed.

Note that the variational property. as well as the functional form of
the derivatives given in E-jx. (89) (91) depends only on the following con-
ditions: (1) M and K are obtained from a functional ¢ according to Eq. (88}
(b) ¢ and ¢ are solved scli-consistently. Namcly, they satisty Lgs. (42) and (52).

Therefore, for any @-derivable approximation 192 namely  any
approximation that satisfics conditicns (a) ana tb) above, the free cnergy is
stationary for variations of ¢ and ¢ about their physical values. In addition,
its derivatives with respect (o the parameters have the same functional form
as the derivatives of the exact frec cnergy.

The @-derivability of the approximation guarantees the unambiguou.
determination of the free cnergy. i-urthiermore, the variational property can
serve as an important tool for vblainine nonperturbative approximitts. ns
for g and gq.
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In gencral a @-derivable approximation is not at the same time a
“gapless™ approximation.

To illustrate this point, we construct the diagrams for A7 and A by
iteration of Lq. (65) and Eq. (A.4) of Appendix A:

MV ORI
o ?@@

Then. with the help of Eq. (88), we can infer tae form of the diagrams entering
the expansion of ¢:

¢ - }f | S S e

I{ we take, for example, the followmg approximahion for ¢

é:‘}f+:\ﬁ? ! ) 93)

then, according to Eq. (85), 1t follows that

VR (94)
<)

In the disordered phase these diagrams reduce o

ORI

which is just the Hartree approxonation veationed i Section Y.

In the ordered phase the expressions (90 for W and A generate o couple
of equations for g and ¢ of the type encountored i the Girardeau Arnovarnt
approximation for hiquid helium. @ Suct an approvimatien, though, is non
“gapless.” In fact, when R i~ regarded as a Tunctional of ¢ onlyv, we have

{j—gK:’I‘r‘JIF + (ﬁ + ;@ (95)
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where

%

denotes the sum of the terms obtained taking the derivative with respect to g
inside ¢ in the Hartrce term. Comparing with the first Eq. (94), we see that
Eq. (82) is not satisfied.
APPENDIX A. DERIVATION OF EQ. (65)
From the identity
doq(12)/5p(3) - —q{12)[8¢-23)/8p(3)] ¢(32) (A1)

and Eq. (52), we obtain

8q(12) . dM(23)
T MR A T R (A 2)
8({( l2) b Y _1 _5![(7.3) .

- Dsaaey 40342 gl 46D — B'q(12) SA04) (3?)A ;

where to derive Eq. (A.3) we have used the symmetry of A4: 2A4(12) --
A(12) : AQ21).

Empioying the derivative relation (23), the Lhis. of Eq. (A2) can be
cxpressed in terms of the three point cumulant and inserting in Eq. (41)
we obtain ’

oM(_23)

5 () ¢(33)

(A4

K() = —4B0234) [g(2) g3 g + 321 4(31) — B'4(2D)

Next we observe that Eg. (S1), from the symmetry of the parameter B,
can be rewritten as
M(12) ¢(22) == —4BB(1234)[32(3) £(4) 4(22) - g(34) q(22) -t £(2) ¢(342)
- q(2234) ¢ q(223) g(4) + ¢q224) g(3) + q(23) q(24)
+ q(24) ¢(23))

Hence, comparing with Eq. (1¥),

M(12) q(22) = —4BB(1234){3g(3) g(4) ¢(22) + q(34) ¢(22) + &(2) q(342)
(=B HIBg(2D)3AG4))
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inserting Egs. (A.2) and (A3 i the r.hiss and multiplying by ¢ 1, we finally
obtain Eq. (65):
M(12) ABB1234)[ 3¢t gtd) | Zq 3]
B(1234){e2) qO33)[OM32):dp0h] ¢ 23)SM(B2I84(34)];
(A.S)
APPENDIX B. DERIVATION OF EQ. (69)
From the sccond denvative refation (17) and Eq. (A.2), we have
52(3)[34(34) - —Blg(331) (3 g(34)]
= Bly33H  0dgdd) 1 og@d) g3
--Blg(3) ¢(34) + ¢(4) ¢133)] - ¢(35)][EM(56)/81.(4)] 4(63)
while from iZq. (A.3)

5q(34) 8103 a(das ¢ ok (w(s(,) S
Hence, substituting in
BAUD MUY BO) [ AM(2)) BucSE)
SA(34) Se(3) 1, 8434) L 8q(38) 1, 54(33)
we obtain
SM(12) SMUD Y o
D ff[‘—g ) ]q[£(3) qu34) ¢ g(4) ¢(33)]
SM(12) 7 e, SM(S6)
35) C
Toe® 1,009 iy 1
SM(12) o ]
- L e 44) .
B e ) OV @) + G 4@)
r aM(12) - \{3_./14(56)
$¢(3) ] 4139) 9(40) s
This can be rewritten as
SM(12) aMU2) 0 M(56)
SA(34) l Sq(3d) L 4033 4(46) dA(34)
OM(12) ] o
- Bl—&;a)——] {g(3)g(34) i g(4)q(33)]
i 814[(]2) . - _—
By ) 1909 9@ b g3 @)
531(12) BM(56)
[ 5¢(3) } 1033 Sty 1)
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That is, using Egs. (67) and (68) ,

SAL(34 - OM(12 .
A-1(1233) M((m) B ‘----(-—-’] [£(3) ¢(34) & g(4) g(33)]
hM\IZ _
Bl o, | 140D a4 g3 @)
SM12; = [ 8M(56)
oM 35).1(5636) | 2120
[_ S Jqq( ) 656)[ el ]0(1(74)¢,(()3)

and multiplying to the left by .1, Fq. (69) follows.

APPENDIX C. DERIVATION OF EQ. (14)
From the definition (72) and (73) of X and P and the expansion for .1
we have
P123) 1202y A23)
XU EA202) 5y 20085 — 3) o6 - )
= Z6T8) ¢(73) g(sh - ) X(343)
X(123) ¢ {Z00212 - F(1236) g(55) g(-6) Z(5612)
T3 g 24 X043

and obscrving that the quantity in the brace adds up to I, we obtain Eq. (74)

APPENDIX D. LUTTINGER-WARD FREE ENERGY

An arbitrary diagram for @ contains interaction vertices B, ¢ lines, and
g lines. Therefore @ depends on A only througi ¢ and g.
Differentiating Fq. (87) with respect to 4¢12), we obtain

S3(—BW) Ol o e 13y o(h) &) ,
. Sq(lf) o1 = 8q(12) | 1 b dul)
- BAM) AN ) T
PAAD iy 2 W a1y T2 [mn],,aA(P
[__§fl) ] b(/ l’)
Sq(12) 1, 8A4(12)

Using Eq. (88), the above expression becomes

dg(1

1012)
bq(l’)
SA(12)

BW) i
8A(12) < Bl 246 1 (D) 4 KD

q- [284012) — M(12) - ¢~1(12)]
- Blg(1) g2 + q(12)]
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Comparing with Eqs. (42) and (52), the quaniibies v the brackets vanish
and we finally have

S(—=BI)0A2) -~ Ble(1) g(2) - q(12)] (D.H
On the other hand, considering the partition function Z given in Eq. (35), we
have
Slog Z)'64(12) - [8C BL)SA2)] 5 -BG)SA2)

Using Egs. (34) and (39). we may compute the above derivative explicitly:

8(log Z)/6A4(12) - - Blg(1) g(2) - (12)]
— BR2A(12)g(2)  w(D) + 4B(1239)[g(2) g(3) g4
- 32(3) ¢(34) - ¢(234)]3[Bg(1)/84(12)]. (D.2)

Comparing with Egs. (41) and (42), we obtain the same result as in Eq. (D.1):
o(log 2), 0412 - Blg(D) g2y | ¢(12)]
Similarly, differentiating ['q. (§7) with respect to B, we obtain

o(—BW) ] ce(l) da(l) 0q(12)
DD B A - 28402 g g - paa)
| 6q_§12_) S _('f(li

ad ‘(12)——63 5P =g (D.3)

In order o computc the derivative ot @ with respect to B, we employ
a transformation of the type used by Baym in Ref. 10. A given nth-order
diagram for @ contains n interaction vertices and 2n lines, counting two g lines
as one, Thus, we may eliminate the explicit B dependence by means of the
transformation

g -» g = Bl qg-»q= B (D.4)

Namely, @ depends on B only through: § and §. Varying B, now we shall have

o ob ) P 1 #g12)
B sgu)_J(,_é-'B" v [ Sq(lz)"L TeB 1.5
Next we note that from Eq. (88) we have
[‘s%'] - B [‘s%%‘] = 287K
) c (D.6)

R NPRPR TN T BN
lsquz)-]‘r B-Y qu(12)]a = BB 12M(12)



60 Daniel ). Amit and Marco Zannetti

while from Eq. (D.4) it follows that
fg(_l_) 4118 3rg(1) + Brs 28l Og(l)

‘B
S g2y § g 2402
~ip 5 BVH2) i BV =
Thus, inserting Egs. (ID.6) and (D.7) into Eq. (D.5), we obtain

o 1 ] aul)

5 3B K i 2K o
. l 1 -1 Cq(lz) .
2B B*M(12)q(12) - B M(lz)_ 12) (D5)

Inserting, in turn, this result in the r.h.s. of Eq. (D.3) and using again Egs. (42)
and (52), we obtain

- BW) = Blul) - 24012)g(2) k(l)]”’(”

----%[2,8/1(12) g Y12) — M2 L “’”2’

S BB 'K(lyg(l) -+ iB ‘M(IZ)(I(Q)
ie.,
d-BW)EB  IBBUK()g(1) | B IM(12) 4(12)] (D.9)
From Eqgs. (41) and (51), for a point interaction, we have

K1) g(ly = —4B[g¥1) * 3g¥1)q(ll) « g(I)qg(111)]
M(12) q(12) - - 4BB[3g¥ 1) qt1ly - 3q*(11) - 3g(l)g(lll) L q(i11Dh)]
where the above notation means tha! all the arguments of the cumulants arc
taken at the same point and an integration over the volume of the system

is understood.
Therefore, Eq. (D.9) can be rewritten as

&—BW)oB  —Blghl) + 6g% i) q(11) & 3¢*(11) + 4g(l)g(i11) 1 ¢(1111)]

(D.10)
The corresponding derivative of log Z is given by
ellog 2)
¢B
CH=BL) <_i;¥ "">>
B

== BI2A(12) g(2) — pil) - 4Blg(D) 1t 3g(1)q(11) - q(11D)]} g(l)

— Blg*(1) - 6221y ¢(11) 3 3g%(11) & dg(1) g(111) + g(1111)]
where the last of Egs. (39) was used.
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Comparing with Eqs. (41) and (42), the coefficient of ¢g(1)/dB vanishes and
we obtain

“log Z)eB - - Blg¥1) + 6821 q(113 + 3¢2(11) + 4g(1)q(i11) & g(i111)]
(D.11)
which 1s the same as Eq. (D.10).

Finally. for the variation of the free energy with respect to 5. we make
very similar considerations. We note that the quantity S is dimensionless.
Thus, the ath-order diagrams for 3% must contain a factor B7. In other
words, B® depends on the termperature explicitly through this factor g»
and implicitly through the f dependence of g and q.

By means of the transformation

Rk P g g By (D.12)

we absorb the explicit temperatare dependence into the g and ¢ lines. The
cffect on BP of a variation of B wil! then be given by

“(BP) AP (1) a(3P) 1 g2y
B [ hq(l)] R [ 84(12)] B (D-13)
On the other hand, {rom Eq. (12.12) we obtain the set of relations
(B La [ O(BD) S
2F IR VLN aligal NN V3 LR YIS
[38(1)] g 32(1)],; / W
S(BD) i [ O(BP) .
R T Pt S 2AL(12
[b(qIZ)] [v)‘(/(l’)] priemaz)
%’l) n 3y 11(2(”
(B 4B P 8
G 1 pap 12 €4U2)
bra LB q(12) = B i
Thus, Eq. (D.13) becomes
aBDy 1. I g(1) ¢q(12)
DL l\ r l . B IA/ 2 A .
B 5 (1) gty - 5 1(12) ¢(12) 4 2BK(I) p: M(IZ) e
Taking the derivative with respect to 8 of Eq. (87), we then obtain
E(— BW I
ié’;——z [Bu(l) - 284020 52) + 8K )

(BA(12) - 1¢7%(12) - ¥M(12)] “f“z’

(1) — AG2) 2(2) - TK()] g(1)
($B'M(12) - A(12)] 4(12)
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1.e., using Eqs. (42) and (52),

A—=BW)[eB == [n(]) — A(12)g(2) + FK(1)] g(l) -+ (3B M(12) -- A(12))q(12)
(D.14)
Differentiating log Z with respect to 8 we obtain

Hlog2) _ «( BL) | /(- BG)

g T
== - B{2A4(12) g(2) - - u(1)

| B3R 2 8(4) + 3e(2) 034+ q234) 4
— (A1) g2) - (1) + JABU234)(2(2) g3) £(d) -+ 3g(2) q(34)

+ q(234)}} g(1) — {A(12) q(12) -i- j4B(1234){3g(1) g(2) q(34)
r 3g(1) q(233) - q{1234)];
In the above expression the cocfficient of ég(1)/¢8 vanishes as can be scen

from Eqs. (4]1) and (42). The rest of the expression, on comparing 1t with
Eqgs. (41) and (51), is seen to reduce to

L) u(l) — 412 @ -+ 1K) + (B3M12) — 40D] (12
(D.15)

which is the same as Eq. (D.14).
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